

Developing Penlets

Livescribe™ Platform SDK
Version 1.5

Developing Penlets

ii

Copyright and Trademarks

LIVESCRIBE, ECHO, PULSE, and PAPER REPLAY are trademarks or

registered trademarks of Livescribe, Inc. Anoto is a trademark of Anoto

Group AB. All other brand and product names are trademarks of their

respective owners.

Copyright © 2007-2010 Livescribe Inc. All rights reserved.

DevPenlets-PlatformSDK-1.5.0-REV-C

12/20/2010 10:52 AM

	

Developing Penlets

iii

Table	 of	 Contents	

Copyright	 and	 Trademarks .. ii	

Livescribe	 Platform	 SDK .. 1	

Developing	 Open	 Paper	 Penlets ..1	

Developing	 Fixed	 Print	 Penlets..2	

Livescribe	 Paper	 Designer..3	

Developing	 a	 Penlet .. 4	

Main	 Penlet	 Class..4	

One	 Penlet	 Active	 at	 a	 Time ..5	

Penlet	 Life	 Cycle..5	

Important	 Lifecycle	 Considerations...6	

Developer	 Tasks	 in	 each	 Life	 Cycle	 Method ...7	

Constructor	 of	 the	 Main	 Penlet	 Class ..8	

The	 Four	 Life	 Cycle	 Callbacks...8	

The	 initApp	 method...8	

The	 activateApp	 Method...9	

The	 deactivateApp	 Method...10	

The	 destroyApp	 Method ...11	

Developing Penlets

iv

Livescribe	 Platform	 Java	 API..12	

Handling	 Smartpen	 Events ...13	

Creating	 Event	 Listeners ..14	

handleMenuEvent	 in	 MenuEventListener...14	

penDown	 in	 PenTipListener...14	

strokeCreated	 in	 StrokeListener ..15	

Regions	 and	 Areas..16	

Regions ...16	

Static	 Regions ..16	

Dynamic	 Regions ...16	

Overlapping	 Regions..16	

Areas ..17	

Region	 Ids	 and	 Area	 Ids ...17	

Associating	 a	 Penlet	 and	 a	 Region ...18	

Dynamic	 Regions	 and	 Instance	 Ids ..18	

Static	 Regions	 and	 Instance	 Ids ...18	

An	 Example..19	

Accessing	 Standard	 Livescribe	 Controls ...20	

Uniqueness	 of	 a	 Region	 ID...20	

Developing Penlets

v

Working	 with	 Static	 Regions...21	

Working	 with	 Dynamic	 Regions..21	

Creating	 a	 Dynamic	 Region..21	

Get	 a	 Bounding	 Box ...21	

New	 Dynamic	 Region:	 Assigning	 Area	 Id	 and	 Adding	 Region	 to	 Collection.......23	

Responding	 to	 User	 Taps	 on	 Regions...24	

Displaying	 on	 the	 Smartpen	 OLED ..24	

Application	 Menu	 and	 RIGHT_MENU	 Items...25	

Displaying	 in	 Response	 to	 a	 User	 Tap	 on	 a	 Region ...26	

Displaying	 a	 Message	 to	 the	 User..26	

Displaying	 Text	 or	 Image	 or	 Both ..27	

Playing	 Sounds ...27	

Using	 Bitmap	 Images..27	

Converting	 to	 ARW	 Format ...28	

Using	 and	 Converting	 Audio	 Formats ...29	

Sampling	 Rate ...29	

Bitrate ..30	

Gaplessness ..30	

Summary	 of	 Supported	 Audio	 Formats ...30	

Developing Penlets

vi

WAV	 Format ...30	

Generating	 Files	 in	 WAV	 Format ...31	

WavPack	 Format...31	

Generating	 Files	 in	 WavPack	 Format...31	

Converting	 WAV	 to	 WavPack ..31	

Configuring	 Penlets ..32	

Penlet	 Properties ..34	

Image	 Resources ...35	

Audio	 Resources ...36	

Text	 Resources..36	

Advanced	 Settings...37	

About	 config.txt ..38	

Saving	 Data	 to	 the	 Smartpen..38	

Serializing	 via	 the	 PropertyCollection	 Class ...39	

Saving	 to	 the	 Smartpen	 File	 System ..39	

Internationalization ...39	

Configuring	 Penlets	 for	 Different	 Locales ..41	

Localizing	 Penlet	 Properties ..43	

Localizing	 Image	 Resources ...44	

Developing Penlets

vii

Using	 Internationalized	 Image	 Resources ...44	

Converting	 Localized	 Images	 to	 ARW..45	

Localizing	 Audio	 Resources ...46	

Using	 Internationalized	 Audio	 Resources..46	

Localizing	 Text	 Resources ..47	

Using	 Internationalized	 Text	 Resources ..47	

Assigning	 Property	 Names	 to	 Constants ...48	

Handwriting	 Recognition..49	

Paper-‐Based	 Input	 Recognition ...49	

ICR	 and	 HWR..49	

Digital	 Text	 and	 Digital	 Ink...50	

Overview	 of	 Handwriting	 Recognition	 Process ..51	

Tuning	 for	 Performance ...51	

Sample	 Translator ..52	

Sample	 Translator:	 User’s	 Perspective...52	

Launching	 the	 Sample	 Translator	 Penlet ...53	

Translating	 a	 Source	 Word ..53	

Tapping	 a	 Previously	 Written	 Word ..54	

Returning	 to	 Application	 Menu	 List...55	

Developing Penlets

viii

Sample	 Translator:	 Developer’s	 Perspective...55	

Domain-‐Specific	 Code ...55	

User	 Writes	 a	 Word ...56	

User	 Taps	 a	 Written	 Word...56	

Constructor	 and	 Life	 Cycle...56	

initApp	 method ...57	

activateApp..57	

deactivateApp ...58	

destroyApp ..58	

canProcessOpenPaperEvents ..58	

Displaying	 a	 BrowseList...59	

isSelectable..59	

Displaying	 a	 ScrollLabel...60	

Registering	 Listeners ...60	

The	 Handwriting	 Recognition	 Engine...61	

Event	 Handling..62	

handleMenuEvent...62	

Up,	 Down,	 Center,	 and	 Left	 Menu	 Events ...63	

Right	 Menu	 Event ..63	

Developing Penlets

ix

Navigating	 Up	 and	 Down	 in	 a	 BrowseList ..64	

Tapping	 Back	 From	 a	 Right	 Menu	 Event..64	

strokeCreated ...65	

HWR	 Events:	 hwrUserPause	 and	 hwrResult ..66	

hwrUserPause ...66	

hwrResult ..67	

penDown ..68	

Developing Penlets

1

Livescribe Platform SDK
The Livescribe Platform SDK is a set of development tools enabling the
creation of Java applications that run on the Livescribe™ Smartpen J2ME
platform and dot paper products that work with the smartpen.

Smartpen applications are known as penlets. Penlets can operate on
Open Paper, Fixed Print Paper, or a combination of both. For a conceptual
discussion of Livescribe dot paper, see Introduction to the Livescribe
Platform.

Developing Open Paper Penlets

Open Paper applications can use any existing paper product that has
Open Paper regions, including Livescribe notebooks and journals. The
Piano, which ships with the Livescribe smartpen, is an example of an
Open Paper application. It issues instructions to the user via the display
and the audio speakers, creates the dynamic regions based on what the
user draws, and captures Livescribe smartpen events on Open Paper as
the user plays the piano. No pre-printed, Fixed Paper controls are
involved.

The figure below shows the basic development process for penlet-only
applications.

To develop Open Paper penlets, follow these general steps:

1. Install Eclipse and the Eclipse plugins from Livescribe. The plugins

are packaged in a single Eclipse feature. For details, see the

Installing the Livescribe Platform SDK document.

Developing Penlets

2

2. Code your penlet against the Livescribe Platform Java API. The

current manual describes how to use the classes and methods

exposed in the API.

3. Eclipse automatically builds your penlet. This process compiles the

penlet code, pre-verifies the classes, and packages the penlet files

into a JAR file.

4. When your penlet is complete, (install) the penlet JAR to the

Livescribe smartpen from within Eclipse.

If you prefer, you can deploy the penlet to the Livescribe

Smartpen Emulator and test your penlet and paper products on

the desktop. Download and install the Livescribe Smartpen

Emulator from the Livescribe Developer site, and read the

Livescribe Smartpen Emulator User Guide for details.

5. Test the penlet code installed on the Livescribe smartpen against

an Open Paper region of a Livescribe notebook.

6. Iterate through steps above until your Livescribe smartpen

application is complete and tested.

Developing Fixed Print Penlets

A Fixed Print penlet uses dot paper that Livescribe has licensed to you,
often including an association with your penlet. This Fixed Print paper is
known as the paper product for your penlet. It contains the static regions
that you define and to which you assign specific functionality in your
penlet. Users of your penlet cannot access these static regions on the
generic Open Paper notebooks and journals from Livescribe. Printed
images normally indicate the location of static regions on your paper
product.

In addition to static regions, your paper product can also support
dynamic regions—that is, areas that are defined at run-time as the user
interacts with the paper. A powerful paper product often combines static
and dynamic regions. As an example, consider a generic Livescribe
notebook as a paper product for Livescribe Paper Replay application. The
controls along the bottom are static regions defined and shaped by the
Livescribe engineers during development of Paper Replay. The blank
space in the middle allows users to create dynamic regions as they take

Developing Penlets

3

notes while Paper Replay is running. Similarly, your paper products may
consist of a combination of static and dynamic regions.

Note: Your penlet can create dynamic regions on any portion of licensed
dot paper that does not have static regions defined by a particular penlet.
The dynamic regions will belong to the current penlet. When a user taps
on one of those regions in the future, that penlet will be activated and will
receive notification of region tap via the penDown event.

Livescribe Paper Designer

Fixed Print penlet development uses the same Livescribe IDE as Open
Paper penlets: Eclipse with a custom Eclipse feature developed by
Livescribe. In addition to the Penlet Editor and Penlet Project type that
you will have used for developing Open Paper penlets, you will need to
use the Livescribe Paper Designer and the Paper Project type to create
the paper product for your Fixed Print penlet. This tool allows you to
define static regions, define the pages including artwork and Livescribe
dots, produce test pages containing development-only dots, and request
the production dots for your paper product from the Livescribe Pattern
Server. The final output of the tool is a Postscript file that you can print
out. The result will be your paper product, complete with your licensed
dots.

To develop Fixed Print penlets, follow these general steps:

1. Use the Penlet Editor to develop Fixed Print penlets. For details,

see the manual titled Getting Started with the Livescribe Platform

SDK.

2. Define a paper product for your Fixed Print penlet, using the

Livescribe Paper Designer of the Livescribe IDE. Define one or

more static areas on the page(s) of your paper product. For

details, see the manual titled Developing Paper Products.

3. Code your penlet against the Livescribe Platform Java API. This

manual describes how to use the classes and methods exposed in

the API.

4. Eclipse automatically builds your penlet. This process compiles the

penlet code, pre-verifies the classes, and packages the penlet files

into a JAR file.

Developing Penlets

4

5. When your penlet is complete, deploy (install) the penlet JAR to

the Livescribe smartpen from within Eclipse.

If you prefer, you can deploy the penlet to the Livescribe

Smartpen Emulator and test your penlet and paper products on

the desktop. Download and install the Livescribe Smartpen

Emulator from the Livescribe Developer site, and read the

Livescribe Smartpen Emulator User Guide for details.

6. Print out one or more test pages, using the Livescribe Paper

Designer. Test pages contain developer dots, which can be used

for the development process only.

7. Test the penlet code installed on the Livescribe smartpen against

the test pages.

8. Iterate through steps above until your Fixed Print penlet is

complete and tested. Do not continue until you are certain your

penlet operates as you wish.

9. Request production pages from the Livescribe Pattern Server,

using the Livescribe Paper Designer. The dots on these pages are

licensed to you and will work with your penlet only.

10. Test the production pages with your penlet on your Livescribe

smartpen.

Developing a Penlet
Although many kinds of penlets can be written for the Livescribe
Platform, the basic anatomy of all penlets is the same. This section
examines the Penlet class, details the penlet lifecycle management, and
lists the packages included in the Livescribe Java API.

Main Penlet Class

The first step to create a penlet is to extend
com.livescribe.penlet.Penlet. The smartpen runtime will only

instantiate classes that derive from Penlet. The life cycle of these objects

is managed by the smartpen runtime.

Developing Penlets

5

From this point onward, we refer to the class you write that directly
extends com.livescribe.penlet.Penlet as your Penlet subclass. The

term merely alludes to the importance of this class. You should not infer
that the class has a main method. . There is no public static void

main method in a penlet. Penlets are like MIDlets: they are launched by

the runtime system, which manages their life cycle by calling specific
methods.

One Penlet Active at a Time

Only one penlet can be active on the Livescribe smartpen at a time. Keep
this in mind while you read about the penlet’s life cycle. When the user
selects another penlet, the runtime deactivates and destroys the current
penlet and switches to the requested penlet. When the runtime switches
back to the first penlet, the second one becomes inactive and is
destroyed, and the first one is reinitiated and reactivated.

You should be aware that certain static regions are able to call Livescribe
system functionality without deactivating and destroying your penlet.
Examples of these regions include printed volume change and mute
controls. For further details, see “Using Standard Livescribe Controls" in
Developing Paper Products.

Penlet Life Cycle

The Livescribe system runtime manages the life cycle of a penlet in the
following manner:

1. Instantiates the constructor of your Penlet subclass.

2. Calls initApp.

3. Calls activateApp.

4. Calls appropriate event handlers in registered listeners as various

smartpen events arrive.

5. Calls deactivateApp when an event causes the runtime to move

your penlet from the active state, due to activation of another

penlet. When a penlet is inactive, the runtime system might also

Developing Penlets

6

destroy it by calling destroyApp. See Developer Tasks in each

Life Cycle Method for more information.

6. Calls activateApp, if the penlet becomes active again.

7. Calls appropriate event handlers in registered listeners as

Livescribe smartpen events arrive.

8. Calls deactivateApp and destroyApp when the Livescribe

smartpen is shut down, provided the penlet is running at that

time.

Important Lifecycle Considerations

The above lifecycle flow is a general case, and in the future might change
to support new features or improve performance.

Livescribe guarantees the following lifecycle events:

• initApp is the first method invoked after the class init method

when a penlet is being created. initApp leaves the penlet in the

"inactive" state.

• activateApp is invoked whenever a penlet is in the "inactive"

state and the smartpen processes an activation event (that is, an

active region tapped, menu invoked, or a snapback event

occurred). activateApp leaves the penlet in the "active" state

• deactivateApp is invoked whenever the penlet is in the "active"

state and the runtime wants to deactivate it. deactivateApp

leaves the penlet in the "inactive" state.

• destroyApp is invoked whenever the penlet is in the "inactive"

state and the runtime wants to destroy it. destroyApp is the last

method that will be invoked on the penlet after which the class

instance will be destroyed. The destroyApp method is invoked

before the smartpen is powered off.

Other Considerations:

When developing your penlets, consider these things as well.

Developing Penlets

7

• activateApp/deactivateApp pairs may be invoked many times

on a single penlet instance.

• initApp/destroyApp pairs may be invoked many times during a

given power cycle of the smartpen.

• Smartpen firmware 1.0 through 1.7 invoked destroyApp once per

smartpen power cycle (although this is not guaranteed).

• Smartpen firmware 2.0 and above invokes destroyApp after every

deactivateApp (although this is not guaranteed).

The following diagram highlights the state transitions during the life cycle

of the penlet.

Developer Tasks in each Life Cycle Method

Following is a list of the life cycle methods and the tasks that developers
should perform in each.

Developing Penlets

8

Constructor of the Main Penlet Class

Developers can create any application-specific resources that they may
need in their penlet. These resources should relate to the specific domain
of your penlet. If any of your objects are part of the penlet profile and
require a PenletContext, you must instantiate them in the initApp

method instead.

The Four Life Cycle Callbacks

There are four callback methods for which your Penlet subclass must

provide the method bodies. At the appropriate moment in the penlet life
cycle, the runtime system calls these methods, sometimes passing back a
value to your penlet. The four life cycle callback methods are: initApp,

activateApp, deactivateApp, and destroyApp.

The initApp method

Before calling initApp, the runtime creates a PenletContext object and

makes it accessible from the context field of your Penlet subclass. A

penlet has only one penletContext object, which encapsulates various

runtime characteristics of the currently executing penlet.

Factory methods that you call on this PenletContext object instantiate

and return references to key objects such as event listeners, the
Handwriting Recognition engine context, and the collection of regions for
the current page. We will return to these objects as we discuss the other
life cycle callback methods.

The code in this method will be executed just once, so you should include
tasks that need to be done only once—at the beginning of your penlet’s
life cycle.

The canProcessOpenPaperEvents Method

If your penlet works on Livescribe Open Paper, you must override the
default behavior of canProcessOpenPaperEvents method. By default, the

method returns false. To enable your penlet to work on Open Paper,
override this method and return true. If you neglect this step, every time
your user taps on Open Paper, the runtime system will deactivate your
penlet and switch to Notes Mode. If you intend on supporting Open Paper

Developing Penlets

9

functionality and do not override this method, your penlet will be
unusable.

The activateApp Method

The runtime system calls activateApp immediately after initApp and

whenever the penlet becomes active after having been inactive. You
should use this method to restore application state that the newly
activated penlet needs to run.

The runtime passes the reason for the activation to the activateApp

method. Constants identifying the various activation reasons are defined
in the com.livescribe.penlet.Penlet class. The ones of immediate

concern for the new developer are:

Penlet.ACTIVATED_BY_MENU This event is sent to the penlet when the
user launches the penlet via the Main Menu.

Penlet.ACTIVATED_BY_EVENT This event is sent to the penlet when the
user taps on an area.

Your penlet can call eventId on the Event passed to this method by the

system and compare it to these constants.

Symmetrical Method Calls

One approach to coding this method is to make it symmetrical with the
deactivateApp method. Do tasks here that you will undo in

deactivateApp. For instance, this is the recommended time to do the

following:

• Add your event listeners, by calling the appropriate add*Listener

methods on the PenletContext object. In your first penlets, these

will probably include:

• addMenuEventListener is required for your penlet to display an

application menu and receive events when the user selects a

menu item.

• addPenTipListener is required for your penlet to receive such

events as PenDown.

• addStrokeListener to receive strokes from the system as the

user draws and writes on dot paper.

Developing Penlets

10

When adding any of these event listeners, pass in the object
implementing the corresponding listener interface. For example, you will
need the object that implements the MenuEventListener to pass to

addMenuEventListener. In simple penlets that have one monolithic

class, you will pass a reference to your Penlet subclass, using the this

reference.

Keep in mind that you will “undo” these actions in the deactivateApp by

calling remove*Listener methods.

Asymmetrical Method Calls

On the other hand, some method calls in activateApp do not have a

symmetrical call in deactivateApp. For example, you may decide to get

a Display object here so that you can display the application menu. To

do this, call getDisplay on the PenletContext object. However, there is

no corresponding call to “release” this object.

The deactivateApp Method

When a user switches the smartpen from one penlet to another, the
smartpen runtime system calls deactivateApp and possibly destroyApp

as well.

Because your penlet may be destroyed when it is inactive, you should
store any relevant application data in the body of deactivateApp and/or
destroyApp to preserve it for future use. As a general rule:

• Any states and data structures that can be easily and quickly

reconstructed should be freed when deactivateApp is called.

• Other states and data structures, such as serializations, should be

stored by destroyApp.

You can use the PropertyCollection class or the PenletStorage class

for these purposes. A PropertyCollection object allows the developer to

set and get developer-defined properties that the system saves on the
Livescribe smartpen. The PenletStorage class provides developers

access to storage on the Livescribe smartpen file system.

The runtime passes a constant to this method that describes the reason
for the deactivation. Your code can test for the reasons that matter to

Developing Penlets

11

your penlet. In your first penlets, it is usually okay not to worry about
these constants and provide a single response to your penlet being
deactivated. As you develop more expertise in penlet development, you
may be interested in some of the following deactivation reasons:

• Penlet.DEACTIVATED_BY_SHUTDOWN

• Penlet.DEACTIVATED_BY_APPSWITCH

• Penlet.DEACTIVATED_BY_NOTESMODE

You should release resources that you have retrieved during the
execution of your penlet so that the memory they occupy can be used by
the next activated penlet. There are some symmetrical calls in this
method which undo some of the calls you made in activateApp. Some of

the event listeners fall into this category.

Asymmetrical Calls in deactivateApp

There are some calls you make in deactivateApp that do not have a

symmetrical call in activateApp.

For instance, consider the Handwriting Recognition engine. It uses many
resources to do the work of analyzing user strokes and producing a word.
You should release these resources in the deactivateApp method. There

are special methods to do this, including calling clearStrokes and

dispose on the engine context object. However, the instantiation of the

engine probably did not take place in the activateApp method. Because

HWR resources are relatively large, you may have decided not to
instantiate the HWR engine until some user event occasioned the need
for it.

The destroyApp Method

The smartpen may call destroyApp whenever the penlet is in an inactive

state. For example, deactivation occurs when switching from one penlet
to another. The runtime system may also destroy the penlet at this time.
When destroyed, your penlet’s initialized state will be lost and its Java
classes unloaded. You should store any relevant application data in the
body of deactivateApp and/or destroyApp to preserve it for future

activation. See The deactivateApp Method.

Developing Penlets

12

Livescribe Platform Java API

Penlets are Java applications that use the Livescribe Platform Java API
(Application Programming Interface). It is based on the Java Platform,
Micro Edition (Java ME) and CLDC (Connected Limited Device
Configuration). The platform is a Java ME stack for with the following
components:

MMAPI 1.2 (JSR 135)
Livescribe Smartpen Profile

CLDC 1.1 (JSR 139)

The Smartpen Profile, created by Livescribe, consists of the following
packages:

com.livescribe.afp com.sun.cldc.io

com.livescribe.configuration com.sun.cldc.io.j2me.socket

com.livescribe.display com.sun.cldc.isolate

com.livescribe.event com.sun.cldc.util

com.livescribe.geom com.sun.cldc.util.j2me

com.livescribe.icr com.sun.cldchi.io

com.livescribe.penlet com.sun.cldchi.jvm

com.livescribe.storage com.sun.cldchi.test

com.livescribe.ui java.io

com.livescribe.util java.lang

com.livescribe.buttons java.lang.ref

com.livescribe.i18n java.util

com.livescribe.io javax.microedition.io

com.livescribe.quickCommand javax.microedition.media

com.sun.cldc.i18n javax.microedition.media.control

com.sun.cldc.i18n.j2me javax.microedition.media.protocol

com.sun.cldc.i18n.uclc

In addition to the classes always available in the runtime profile, there
are a number of extra classes that can be used by any penlet. These
classes are added to the jar for a penlet automatically by the Livescribe

Developing Penlets

13

build system if they are used by the penlet. The extra classes are
contained in the following packages:

com.livescribe.ext.plugins

com.livescribe.ext.ui

com.livescribe.ext.util

For technical details on packages, their classes and methods, please
consult, the Livescribe Javadoc in the SDK.

Handling Smartpen Events
Penlets are event-driven applications. Events can be actions that occur in
response to a user manipulating the Livescribe smartpen on dot paper. Or
events can be various system activities that are of interest to the penlet.

The smartpen system accepts input from the hardware or from the user
and notifies the penlet by calling appropriate event handlers. In some
cases, such as menu actions and system-generated activities, these
events are encapsulated as descendants of the Event class. Thus, there

are menu event objects and system event objects, which the system
passes to the event handler. In other cases, there are no Event

subclasses to encapsulate the events. The system calls the appropriate
event handler and passes in other useful parameters instead, such as
Region objects and time stamps of user strokes.

The major kinds of user actions and system activities include:

Menu Events Sent by the system when the user taps on a Nav Plus symbol.
Strokes Sent by the system when the user draws or writes on

Livescribe dot paper. A stroke is the unbroken line (or “curve”)
traced between the time the user puts the smartpen tip down
on dot paper and the time they pick it up.

Pen Down Events Sent by the system when the user puts the Livescribe
smartpen tip down on Livescribe paper.

HWR Results Sent by the system when the Handwriting Recognition (HWR)
engine has an intermediate or final result (i.e., a string
containing the word or pattern that the engine produced as its
best analysis of the word the user just wrote).

Area Entering and
Exiting Notification

Sent by the system when a user is in the middle of creating a
stroke with the Livescribe smartpen on dot paper and the
stroke enters or leaves a region.

System Events and
Hardware Events

Sent by the system to communicate system occurrences (such
as the user just muted the speaker) or hardware state (battery

Developing Penlets

14

level, available flash memory for storage, etc.)

Creating Event Listeners

The developer implements the appropriate listener interface, providing
functionality for the event-handling method(s). Then, the developer adds
the listener to the PenletContext object. In simple penlets, the Penlet

subclass generally implements the various listeners. In more complex
penlets, a particular listener may be implemented by a helper or manager
class.

Although there are a variety of listener interfaces and the event handler
methods they specify, the most important event handlers for beginning
penlet developers are:

handleMenuEvent in MenuEventListener

The handleMenuEvent method in

com.livescribe.events.MenuEventListener is called by the system

when the user taps up, down, right, left or center on a Nav Plus. The
system passes a MenuEvent object to the method. You can check what

kind of menu event occurred by calling the getID method on the

MenuEvent object and comparing the return value with the constants

defined in the MenuEvent class: MENU_UP, MENU_DOWN, MENU_RIGHT,

MENU_LEFT, and MENU_SELECT.

To select the currently visible menu item in the OLED display, the user
clicks on the right arrow of the Nav Plus. Thus, developers should pay
close attention that they handle the MENU_RIGHT events appropriately.

Note that, despite the name, MENU_SELECT events have nothing to do

with selecting menu items. Instead, they are sent when the user taps the
center of a Nav Plus.

penDown in PenTipListener

The penDown method in PenTipListener is called by the system when

the user places the smartpen tip down on dot paper. You will be handling
this event even in your first penlets. There is no Event class that

encapsulates this user action. Instead, the system passes in the following
parameters:

Developing Penlets

15

time This is a long integer value that indicates when the pen down occurred.

region This is a Region object that identifies the unique rectangle on a page

of dot paper on which the pen down occurred. If there are no regions
where the pen down occurred, the system sets the regionId to 0.

pageInstance A PageInstance object that identifies the particular page of dot

paper on which the pen down occurred. The system instantiates all
PageInstance objects for you and passes the appropriate one to

certain event handlers in which you might need the page instance. For
example, when coding the penDown or strokeCreated event

handlers, you would need the current PageInstance object in order

to create a StrokeStorage object and retrieve individual strokes

made by the user.

There are other event handlers in PenTipListener that the basic penlets

leave as no-ops, including:

• penUp

• doubleTap

• singleTap

These can be very useful in more sophisticated penlets.

strokeCreated in StrokeListener

The strokeCreated method in StrokeListener is called by the system

when the user completes a stroke on dot paper. There is a Stroke class

to encapsulate strokes, although the strokeCreated does not pass a

Stroke object to this method. Instead, it passes the same parameters as

does the penDown event handler.

Note that when a user creates a stroke, the system calls penDown, penUp,

and strokeCreated. Since strokeCreated encompasses both a pen up

and a pen down, you should think carefully about what happens when a
stroke occurs on an existing region.

For instance, your region may be designed for tapping. But users will
sometimes jerk the smartpen slightly when attempting a tap. This
movement will probably cause a stroke event to be sent to your penlet.
In that case, you should implement the strokeCreated method the same

as the penDown method.

Developing Penlets

16

Regions and Areas

Regions

An active region is an active expanse of contiguous dots on Livescribe
dot paper. A user can tap on a region and get a response from the penlet
that owns the region. If the penlet is not running, the runtime system will
launch it. If the penlet is just deactivated, the system will activate it.

An active region is often simply referred to as a region. Active region
and region are synonymous.

Static Regions

A static region is a region specified by the developer in the paper
product definition (called an AFD). The dot paper usually has a printed
graphic to indicate the location, shape, and usage of a static region. For
example, the Paper Replay control bar at the bottom of each page in a
Livescribe notebook is a group of static regions. Static regions are
sometimes called Fixed Print regions.

Dynamic Regions

A dynamic region is a region created during run time when a user taps
on unclaimed dot space. (Unclaimed dot space is known as Open Paper.)
The penlet creates dynamic regions that encompass the written input and
can be tapped on to trigger behavior in the penlet. For example, in Piano,
the user creates dynamic regions when drawing piano keys and rhythm
and instrument buttons. In Paper Replay, the user creates dynamic
regions as the user takes notes during a recording. Later, the user taps
on a note and the associated point in the audio starts to play.

Overlapping Regions

Regions may overlap. In that case, the z-order of regions determines in
which order the events are delivered. The region with highest z-order
receives the events first. Then the region with next highest z-order. And
so on. If a region has the occlusive bit set, then regions with lower z-
orders do not receive events.

Developing Penlets

17

Developers assign z-order to static regions during penlet development.
Dynamic regions often receive a z-order at run time such that the most
recently drawn region is "on top"—that is gets a higher z-order than older
regions. However, this behavior is up to the developer to implement and
is not required.

Areas

While a region is a physical entity on dot paper, an area is a logical
concept. An area defines functionality that should occur when a user taps
on (otherwise interacts with) a region. Best practice dictates that each
area trigger only one such action.

The developer assigns an area to each region. The same area can be
assigned to multiple regions. For example, all the Record buttons in Paper
Replay control bars have the same area, because they all perform the
same action.

Region Ids and Area Ids

A Region Id is an internal 64-bit number that uniquely identifies a region
to a smartpen. The Region Id encodes: Area Id, Instance Id,
Occlusiveness, and Z-order, among other things.

An Area Id is a 16-bit positive integer that is a subset of the Region Id.
An Area Id must be unique within a penlet, but one Area Id can be
assigned to multiple regions. All regions that are owned by the same
penlet and have the same Area Id will have the same functionality.

Developers are responsible for assigning Area Ids to their regions. Static
regions are assigned Area Ids when the paper product is defined.
Dynamic regions are usually assigned Area Ids in event handlers such as
penDown.

The system reserves Area Id of 0 to denote Open Paper—that is, dot
space that has not been claimed by a region. Thus, a developer starts
assigning Area Ids at 1.

Another way of thinking of an area is as a collection of regions that have
the same area Id.

Developing Penlets

18

Associating a Penlet and a Region

A region must be associated with the penlet that should be activated
when a user taps on the region. The Instance Id identifies the penlet
thus associated. Since some penlets may be instantiated multiple times,
each running instance of a penlet has its own Instance Id. For instance,
the Piano application is instantiated separately every time a user draws a
new piano. Thus, several Piano instances may exist simultaneously.

An instance Id is a 16-bit positive integer and is encoded as part of the
Region Id.

Dynamic Regions and Instance Ids

Dynamic regions are assigned an Instance Id by the system when the
region is created. The system encodes the Instance Id in the Region Id.

Static Regions and Instance Ids

Static regions are assigned an Instance Id in a slightly more complex
way.

Application Class Name and Application Id

Each penlet is uniquely identified by its Java class name, such as
com.livescribe.paperreplay. Such class names, however, can be

rather unwieldy, so a more efficient identifier has been devised.

The Application Id is a 16-bit positive integer that the developer must
create and assign to the penlet. The AFD for a paper product maps these
Application Ids to Application Class Names.

When defining static regions, the developer associates an Application Id
with one or more static regions. The Application Id is coded into the
Region Id at development time. Only static regions have Application Ids.

Application Ids and Instance Ids.

At runtime, a user taps a region. Here's how the smartpen system
responds:

Developing Penlets

19

1. Reads the Application Id.

2. Looks up the Application Class Name in the AFD for the paper

product.

3. Looks up the Instance Id for that Application Class Name.

4. Modifies the Region Id, replacing the Application Id with the

Instance Id.

5. Activates (or launches and activates) the appropriate instance of

the appropriate penlet.

The developer deals with these identifiers at different points in his
development process. When defining a region in your paper product, you
associate an Application Id and Application Class Name with the region.
When your code accesses the Region Id in an event handler, however,
only the Instance Id is retrievable.

An Example

To clarify things a little, let's consider an example. Assume a smartpen
has two applications, Paper Replay and Timer, with the following Instance
Ids at run time. (The Instance Ids likely vary from one smartpen to
another.)

Application Class Name Instance Id

com.livescribe.paperreplay 10

com.livescribe.timer 11

During application development, our developers mapped the following
Application Ids and Application Class Names in the AFDs for the Livescribe
notebooks. They could have chosen any numbers for the Application Ids,
as long as each was unique within an AFD.

Application Class Name Application Id

com.livescribe.paperreplay 2

com.livescribe.timer 1

A static region, like the Stop button for Paper Replay, has Area Id = 4,
which is a global value defined by Livescribe for standard controls.

Developing Penlets

20

Looking at the second table, you can see that region must have an
Application Id = 2. At run time, the Static Region is tapped by the user;
the event thrown will have Area Id= 4 and Instance Id = 10 (In the
first table, you can see that the Instance Id for Paper Replay is 10.)

For more details on associating Application Ids with penlets and assigning
them to static regions, please read Developing Paper Products.

Accessing Standard Livescribe Controls

Some functionality provided by the smartpen system and by the bundled
applications (such as Paper Replay) is accessible from within your penlet.
You access this functionality by using the Standard Livescribe Controls in
your paper product.

Livescribe publishes a list of the standard Area Id for each such control,
as well as the Application Class Name of the associated system module or
bundled application. Use of Standard Livescribe Controls does not require
Application Ids.

For details, please read "Standard Livescribe Controls" in Developing
Paper Products.

Uniqueness of a Region ID

You may be wondering how Regions Ids can be kept unique in the
following situation:

• Two regions are defined in the same page of a paper product.

• The regions are associated with the same penlet.

• The regions are not distinguished by a z-order value. (They do not

occupy the same dots on the same page.)

In this case, the smartpen system ensures that each Region object has a

unique region ID. It uses the z-order value for this purpose, since the z-
order is otherwise unused. Normally, this is all a matter of system
“bookkeeping” and need not concern you.

Developing Penlets

21

Working with Static Regions
If your application has static regions, it also has a paper product. The
best tool for developing paper products is the Livescribe Paper Designer.
For a detailed discussion of paper creation, including static regions,
please see Developing Paper Products.

For information on handling events, see Handling Smartpen Events in this
manual.

Working with Dynamic Regions
This section discusses how to create a dynamic region and how to
respond to user taps on a region

Creating a Dynamic Region

There are three main steps to creating a dynamic region.

1. Get a bounding box (which is a Rectangle object). See Get a

Bounding Box.

2. Assign an Area Id and create a Region object. See New

Dynamic Region: Assigning Area Id and Adding Region to

Collection.

3. Attach the Region to the RegionCollection for that page. See

New Dynamic Region: Assigning Area Id and Adding Region to

Collection.

Get a Bounding Box

The location of a region on dot paper is defined by a bounding box.
Whatever actual shape the user writes or draws the resulting bounding
box is a Rectangle object. There are three ways to get a bounding box

for user input.

• Get a bounding box for a stroke from the ICR engine.

• Get a bounding box for a stroke from a StrokeStorage object.

Developing Penlets

22

• Get a bounding box for a group of strokes, using the

StrokeStorage and Stroke classes.

The ICR Engine: When you are using the ICR engine to analyze user
writing, the engine determines a bounding box that encompasses the
user’s written word. You can get that bounding box by calling the
getTextBoundingBox method on the ICRContext object. The method

returns a Rectangle object, which is the bounding box containing the

written word. You normally make that call in the Handwriting Recognition
event handler hwrUserPause.

The StrokeStorage Class: When you are not using the ICR engine to
analyze user writing, you must instantiate the StrokeStorage class. A

StrokeStorage object contains all strokes that meet two conditions: (1)

the strokes were made on the current page of dot paper and (2) the
strokes belong to the current penlet.

The StrokeStorage object has a getStrokeBoundingBox method that

returns a Rectangle object representing the stroke’s bounding box. You

normally call that method in the strokeCreated event handler.

Getting Bounding Box for Several Strokes: The bounding box
returned by getStrokeBoundingBox is the smallest rectangle in which the

stroke will fit. If you wish to create a bounding box that encompasses
several strokes, proceed in the following manner: Get a bounding box for
the current stroke. Then get the next stroke and get its bounding box.
Create the union of those two bounding boxes. Continue until you reach
the last stroke. You normally determine the union of several bounding
boxes in the strokeCreated event handler.

The following code snippet captures written strokes and creates a Shape

union which represents the smallest possible rectangle containing all
strokes:

public void strokeCreated(long startTime, Region areaID
 PageInstance pageInstance) {

 this.currentStroke = strokeStorage.getStroke(startTime);

 // Initialize the container Shape
 if (null = = this.currentRect) {
 this.currentRect = this.currentStroke.getBoundingBox();
 }

Developing Penlets

23

 // Add the stroke to the container Shape
 else {
 this.currentRect = Shape.getUnion(this.currentRect, this.currentStroke);
 this.currentRect = this.currentRect.getBoundingBox();
 }
}

Both the Stroke and Rectangle classes extend the Shape class. All

shapes have getBoundingBox and getUnion methods. You can learn

about these classes in the Javadoc for the com.livescribe.geom

package.

New Dynamic Region: Assigning Area Id and
Adding Region to Collection

The Area ID of a region determines how a penlet responds to a user tap.
When the user taps on Open Paper (unclaimed dot space), the area ID
that the system passes to strokeCreated is 0. The developer must

create an area ID and assign it to the new dynamic region. That dot
space is now claimed by your penlet and will have the Area Id you
specified. Regions that have the same area ID will have the same
behavior.

A RegionCollection object contains all the regions belonging to the

current page of dot paper. When a user creates a stroke on Open Paper,
the event handler must create a new Region for the current stroke and

add the Region to the RegionCollection. The region is now “active.”

When the user taps on that region in the future, the penlet will respond
as designed by the developer.

The following code snippet from the Translator Demo sample project
demonstrates creating a unique Area ID for a new dynamic area and
adding a new Region to the RegionCollection. Note that you must pass

in the bounding box of the region when calling the addRegion method.

Rectangle rect = this.hwrEngine.getTextBoundingBox();
RegionCollection rc = this.context.getCurrentRegionCollection();
int wordAID = getAreaIdForWord(...);
addDynamicArea(rect, workAID,ac);

private static void addDynamicArea(Rectangle rect, int aid,
 RegionCollection rc) {
 int centerX = (rect.getX() + (rect.getWidth() >> 1));
 int centerY = (rect.getY() + (rect.getHeight() >> 1));
 int areaId = (aid & AREA_ID_MASK)
 | ((centerY & AREA_ID_CENTER_Y_MASK)
 << AREA_ID_BITS);

Developing Penlets

24

 Region regionID=new Region(areaId, centerX, false, false);
 rc.addRegion(rect, regionID, false);
}

Responding to User Taps on Regions

A penlet responds to a user tap on a region by implementing the penDown

event handler. The system passes the following parameters: time,

region, and pageInstance. These are a long value representing the time

stamp of the tap, the Region object in which it occurred, and the

PageInstance object representing the current page of dot paper.

Developers generally implement the penDown event handler in the

following manner:

1. Check if the penDown occurred on Open Paper. If so, simply return.

The strokeCreated event handler should create the region for a

stroke on Open Paper.

2. A developer can determine if the event is on Open Paper by calling

the getInstance method on the Region object passed to penDown.

The instance ID is a unique integer created by the system to

manage penlets that are installed on a smartpen. If the value is 0,

no penlet owns that dot space; it is Open Paper.

3. If getInstance returns a non-zero value, the current penlet owns

the region on which the penDown occurred. The developer retrieves

the area ID and calls appropriate functionality. Often, the

response is a sound on the smartpen speaker or a display on the

smartpen OLED.

Note: If functionality for a region should be activated when the

user either draws into it or taps on it, rather than just when the

user taps on it, you should use the regionEnter event rather than

the penDown event.

Displaying on the Smartpen OLED
The penlet can display on the Livescribe smartpen OLED in the following
ways:

Developing Penlets

25

Application Menu and RIGHT_MENU Items

Many penlets have an application menu that displays available items, one
item at a time. The user scrolls through the menu by tapping the up and
down arrows on the Nav Plus. When the desired menu item appears, the
user selects it by tapping on the right arrow. The penlet then responds
with a submenu, a sound and display, or other functionality.

The responsibilities for implementing the application menu are shared by
the system and the penlet. The system handles display of the current
menu item and display transitions (the “upward/downward scrolling
effect”) from item to item. The developer codes the movement of the
focus through the application menu and, of course, the response to a
MENU_RIGHT event.

Creating an Application Menu: Developers enable an application menu
for their penlets as follows:

1. Implement the BrowseList.Item interface as a static member

class of the Penlet subclass.

2. Instantiate that static member class, once for each item in the

application menu.

3. Instantiate the BrowseList class, passing in a vector of

BrowseList.Item objects.

4. Call the setCurrent method on the current Display object,

passing the BrowseList object as a parameter.

Moving Focus Through the Application Menu: The system displays
the menu items, but the developer must handle moving the current focus
to items in the BrowseList object in response to MENU_UP and MENU_DOWN

events.

1. Call the focusToNext or focusToPrevious methods, as

appropriate.

2. Call the setCurrent method on the current Display object,

passing the BrowseList object as a parameter. (Not required, if

current Display is already set to the BrowseList object.)

Developing Penlets

26

Handling MENU_RIGHT Event: When the application menu is
displaying in the smartpen OLED, the user can tap the right arrow of a
Nav Plus. The penlet must handle the MENU_RIGHT event. One response
is to play a sound and display text to the smartpen OLED.

Displaying in Response to a User Tap on a

Region

When a user taps on a region, the regionEnter, penDown, penUp,

singleTap, doubleTap, and regionExit event handlers are called by

the system. Generally, all penlets implement penDown. The other handlers

are implemented fully or as no-ops, according to the design of the penlet
developer. Many useful penlets handle user taps on regions by
implementing penDown or regionEnter only.

One response to a user tap is to display text and/or images to the
smartpen OLED. Such “tap and display” functionality is very common in a
penlet. The code looks like this:

The following code snippet sets a ScrollLabel as the current

Displayable and draws the specified text to the Display.

 if (this.display.getCurrent() != this.labelUI) {
 this.display.setCurrent(this.labelUI);
 }
 this.labelUI.draw(textToDraw, true);

The current display will remain on the smartpen OLED until the penlet
calls setCurrent again (or the system switches to another penlet in

response to user actions.)

Displaying a Message to the User

Penlets also use a ScrollLabel object whenever they need to display a

message to the user, whether in response to a user tap or not. The calls
are identical to the preceding section.

Developing Penlets

27

Displaying Text or Image or Both

The draw method of the ScrollLabel supports the display of text, image,

or both. Penlets call the appropriate version of the overloaded draw

method.

void draw(java.lang.String text, Image img, boolean scroll)

void draw(Image img, java.lang.String text, boolean scroll)

You can read more about the ScrollLabel class in the Javadoc for

com.livescribe.ui package.

Playing Sounds
Sounds that a penlet plays are resources packed in the penlet’s JAR file.
If you place the sound files in your penlet project in the res\audio\

folder, the Ant build system will automatically put them in the JAR at that
same path. The supported file formats are WAV and WavPak.

The following code snippet initializes a MediaPlayer object and plays an

audio resource that is specified via usage of the I18N Resource Bundle.

MediaPlayer mediaPlayerUI;
. . .

this.mediaPlayerUI = MediaPlayer.newInstance(this);
. . .
String audioFile=bundle.getSoundResource(I18NResources.ID_SOUND_WRITE_WORD);
this.mediaPlayerUI.play(audioFile);

Using Bitmap Images
Like sounds, small bitmap images are resources that are stored in the
penlet’s JAR file. To access these resources at runtime, there is no special
method in the Livescribe Smartpen Java API. Instead, you should use
standard Java APIs to get a resource as a stream, as demonstrated in
this code snippet:

Class myPenletClass = this.getClass()
myPenletClass.getResourceAsStream(“images/myImage.arw”)

Note: The above example is not localizable. A localizable equivalent is:

ImageResource helloworldImage =
context.getResourceBundle().getImageResource("helloworld");

Developing Penlets

28

Bitmaps for display on the smartpen OLED are small. Developers should
verify that their bitmaps are discernable and communicate effectively
with the user. The dimensions of the OLED are as follows:

Full Dimensions of Smartpen OLED Display

Height 18 pixels
Width 96 pixels

The penlet does not always have the full dimensions of the smartpen
OLED display at its disposable. At certain system thresholds, the system
uses a small portion at the right of the display to show the System Tray.

System Tray Dimensions

Height 18 pixels
Width 6 pixels

Converting to ARW Format

The smartpen uses image files with an ARW extension, which indicates a
simple 1-bit file format designed for the smartpen. This format has
nothing to do with the Sony image format that uses the same extension.
The Livescribe Platform SDK’s build system provides a way for developers
to convert images to ARW.

1. Create bitmap images in the BMP, GIF, JPEG, JPG or PNG format.

2. Convert the images to ARW by simply placing them in the

src/images folder in the penlet project.

3. The images will be automatically converted to ARW and put in the

JAR in the res/images/ folder.

Note: You can convert an image to ARW format manually by using the
Livescribe Image Converter in the Eclipse IDE with Livescribe plugins:

1. In the Package Explorer, select the top node of your penlet

project.

2. Select Livescribe > Penlet Configuration Editor.

3. In the Image Resources tab, click Add.

Developing Penlets

29

4. Click Browse to select your image file.

5. Click OK to Add the converted image.

The image will be converted to ARW format and stored in the

res\images folder of your penlet project.

If you will be localizing your penlet, see Converting Localized Images to
ARW.

Using and Converting Audio Formats
The Livescribe Platform supports three audio playback formats natively:

• Microsoft WAV

• WavPack

You should choose one of these formats based on audio quality, playback
features supported, and storage requirements. For all formats, only mono
and stereo are supported. For WAV and WavPack formats, the bit depth
must be 16-bit.

Sampling Rate

The sampling rate at which the smartpen plays audio files is 16 kHz.
Consequently, 16 kHz is the ideal sampling rate to use when creating
audio. Higher sampling rates are generally usable; however, they should
be avoided whenever possible because:

• They require additional CPU cycles to play.

• The smartpen's resampling algorithm does not provide high quality

for "down-sampling", since it is designed for "up-sampling."

• They are a waste of storage space on the smartpen.

Sampling rates lower than 16 kHz are allowed, but they result in a
tradeoff: audio files occupy less storage space, but have lower sound
quality.

Developing Penlets

30

Bitrate

A very important measurement of any audio file is bitrate. This refers to
the amount of data consumed by the file each second. It is generally
measured in bits per second (bps) or kilobits per second (kbps).

Gaplessness

Audio formats can be either gapless or not gapless. A format is gapless if
audio playback can blend seamlessly from one clip to another (or have a
clip loop back to its own beginning in a seamless manner). WAV and
WavPack are inherently gapless because there is a one-to-one
correspondence between input and output samples.

Summary of Supported Audio Formats

The following table describes characteristics for each of the audio formats
supported by the Livescribe Platform.

Format Ext Min Mono
Bitrate

HQ Mono
Bitrate

Min Stereo
Bitrate

HQ Stereo
Bitrate

Gapless? CPU
Usage

License

MS WAV .WAV 256 kbps 256 kbps 512 kbps 512 kbps yes low free

WavPack .WV 36 kbps 56 kbps 72 kbps 96 kbps yes medium free

WAV Format

As the Microsoft audio standard, WAV is probably the most common
audio format in the world. Although the WAV container supports
compressed formats (commonly, ADPCM) WAV files intended for the
smartpen must be 16-bit uncompressed PCM (either mono or stereo).
This format provides perfect quality (within the limits of our 16 kHz
sampling rate), sample-accurate seeking, gapless playback, and minimal
use of the CPU during encoding. However, being uncompressed, it is
very wasteful of the flash storage space on the smartpen and should only

Developing Penlets

31

be used when absolutely needed or when the clips are of very short
duration.

Generating Files in WAV Format

Nearly all audio editing programs can generate WAV files compatible with
the Livescribe Platform. Simply bear in mind the requirements: 16 kHz,
16-bit, stereo or mono.

WavPack Format

The WavPack format is an open-source audio codec that provides both
lossless and lossy compression of WAV files. Like WAV, WavPack is
sample-accurate and gapless. The Livescribe Platform does not currently
support WavPack seeking.

The lossless mode allows WavPack to store the exact audio data provided
by the WAV files, but in about half the space. The lossy mode is similar to
the industry-standard AAC, but much simpler. To provide the same
quality as AAC, WavPack requires about a 1/3 higher bitrate, but also
uses fewer CPU cycle(s) for both decoding and encoding, because all
processing is done in the time domain.

Generating Files in WavPack Format

You have two options for creating WavPack files: generate them using a
WavPack-aware audio editor or convert WAV files to WavPack, using the
WavPack tool in Livescribe Platform SDK.

Some audio editing programs support WavPack natively (such as Reaper
and Traverso). There are WavPack plugins for the popular Adobe audio
editor Audition (which also works with CoolEdit) and Steinberg's
WaveLab.

Converting WAV to WavPack

If your audio creation program does not export to Wav Pack, you can
simply export to WAV. Then you can convert to WavPack using:

Developing Penlets

32

• The Livescribe Penlet Configuration Editor, accessed by

selecting Livescribe > Configuration Editor in your Eclipse with

Livescribe plugins IDE.

or

• The command-line WavPack encoding tool called wavpack.exe. It

is found in the SDKInstallDir\Resources\penletsdk\bin\win32

folder, where SDKInstallDir is the directory to which you

unzipped the Platform SDK. Source files must be 16-bit, 16 kHz

files.

Lossless WavPack Files

To create lossless WavPack files, use the following syntax at the Windows
command-line:

wavpack filename.wav –x6

The destination file automatically receives the same name as the source
file, but with the .WV extension.

Lossy WavPack Files

To create lossy WavPack files, use the following syntax at the Windows
command-line:

wavpack filename.wav –x6 -bxx

where xx is the desired bitrate in kbps. For example, to generate a high-
quality stereo file, use –b96.

Configuring Penlets
You can configure properties and resource files for your penlets using the

Penlet Configuration Editor. You can also configure your penlets to

support different locales using the Penlet Configuration Editor. For more

information, see Localizing Penlet Properties.

To open the Penlet Configuration Editor, select your penlet project in the

Project Explorer and right-click to open a list of available menu items.

Select Penlet Configuration Editor to open it. The editor has tabbed

Developing Penlets

33

views for Properties, Image Resources, Audio Resources, Text Resources,

and Advanced Settings.

34

Penlet Properties

To define basic properties of your penlet, click the Properties tab in the

Penlet Configuration Editor. Here you can change the menu name, launch

sound, penlet name, penlet classname, free-form description of the

penlet, Livescribe Store application category, penlet version, and toggle

the penlet to be locked (removable) or not. To change a value, select its

text and edit it in place.

When you edit these properties using the editor, they are written to

either the build.properties or the menu.txt configuration file, as

appropriate. The penlet build process uses these files to create the penlet

JAR.

In the penlet’s source code project, the menu.txt file lives in the res

folder. It is a plain text file in which you enter properties using

name=value syntax. The properties include:

appclassname Required. Name of the

application class name

appclassname=Livescribe.foo.Foo

Type Required. Set to APP type=APP

Developing Penlets

35

Name Required. Name of the

penlet as it should

appear in the Main

Menu.

name=Foo

sound Optional. Name of

sound file that is

played when your

penlet’s name rolls into

view on Main Menu.

This file should also be

listed in the resources

property.

sound=NP_Foo.wav

Image Resources

To define image resources for your penlet, click the Image Resources

tab in the Penlet Configuration Editor. Use the Add, Rename, or

Remove buttons to locate and assign your images.

Developing Penlets

36

Audio Resources

To define audio resources for your penlet, click the Audio Resources tab

in the Penlet Configuration Editor. Use the Add, Rename, or Remove

buttons to locate and assign your audio files.

Internationalized audio files are stored in a directory path including audio

and then the locale name. In the sample res tree, you can find English

audio files at res\audio\en_US and French audio files at

res\audio\fr_FR.

Text Resources

To define text resources for your penlet, click the Text Resources tab in

the Penlet Configuration Editor. Use the Add or Remove buttons to

create key/value pairs of text strings for your penlet.

Developing Penlets

37

Advanced Settings

Use the Advanced tab to define the penlet group name and version used

when deploying applications to end users. You can also configure the

Penlet SDK Home folder to set up custom build environments.

Developing Penlets

38

About config.txt

The config.txt configuration file specifies application properties that can

be read by the penlet at run time. Application properties are similar to

resources in that their values are externally specifiable, but they differ in

that they are not localizable. The properties in config.txt are not currently

writable at run time.

In the penlet’s source code project, the config.txt lives in the res folder.

It is a plain text file in which you enter properties using name=value

syntax. Examples are:

foo=bar

foo2=123

You can access your penlet’s configuration properties from your code by

calling getAppConfiguration on the PenletContext object. The method

returns a Config object. To retrieve a property, call one of the following

methods on that Config object:

• getStringValue	
• getBooleanValue	
• getDoubleValue	
• getLongValue	

Note: Since property values are specified in the config.txt file as strings,

you need to know what type each value should be and call the

appropriate method. Here is a code snippet:

Config config = context.getAppConfiguration();

String value = config.getStringValue(“foo”);

String value = config.getLong(“foo2”);

Saving Data to the Smartpen
You can save runtime data from your penlet to the smartpen in two
ways:

Developing Penlets

39

• Serializing data using the PropertyCollection class.

• Saving data directly to the file system of the Livescribe smartpen.

Serializing via the PropertyCollection Class

The PropertyCollection class allows you to create properties at

runtime. The properties for your penlet are stored in a properties file on
the smartpen’s file system. Since you can set property values to any Java
object, this is a convenient way to achieve object serialization and
deserialization in your penlet. (Of course, very large objects might
degrade your penlet’s performance.)

The steps to use a property collection are:

1. Call the static method PropertyCollection.getInstance,

passing in the PenletContext object.

2. Set properties by calling the setProperty method.

3. Get properties by calling the getProperty method.

You can read more about the PropertyCollection class in the

com.livescribe.afp package.

Saving to the Smartpen File System

You can save data to the file system of the smartpen by using the
com.livescribe.storage package.

Internationalization
Livescribe smartpens support different locales, allowing the user to select
from a pre-determined set. To configure your penlet for multiple locales,
follow these guidelines.

1. In your source code, place internationalized resources in the

correct directory trees underneath the res directory.

Developing Penlets

40

2. Access these resources using methods in the com.livescribe.i18n

package.

Following is a sample res directory tree. This example shows a locale-

specific directory fr_FR, as well as a general language directory fr. This

directory is useful for content that should be the same for all countries

using a given language. For example, if you want text displayed the same

in fr_FR, fr_CA, you would put it in the fr language directory.

The full search order for the example of fr_FR is:

1. fr_FR

2. fr

3. en_US (the default locale for the smartpen)

4. en

5. default locale (resource root directory - /res, /res/audio, or /res/images

depending on the resource type.)

Developing Penlets

41

Configuring Penlets for Different Locales

You can configure your penlets to support different locales using the

Penlet Configuration Editor.

To open this editor, select your penlet project in the Project Explorer and

right-click to open a list of available menu items. Select Penlet

en_US

messages.properties

menu.text

res

fr_FR
messages.properties

menu.text

en_US
welcome.wav

goodbye.wav

fr_FR
welcome.wav

goodbye.wav

audio

en_US
image.arw

anotherImage.arw

fr_FR
image.arw

anotherImage.arw

image

s

fr
messages.properties

menu.text

Developing Penlets

42

Configuration Editor to open it. The editor has tabbed views for

Properties, Image Resources, Audio Resources, and Text Resources.

To create a new locale for your penlet, click the Add locale button on

any of the configuration editor tabs. Type in one of the supported locales

from the list below, and click Okay.

English - US en_US (default)

French fr_FR

German de_DE

Italian it_IT

Spanish es_ES

Korean ko_KR

Simplified Chinese zh_CN

You can also remove one or more locales by clicking the Remove locale

button, choosing one or more of the locales, and clicking Okay.

After creating a locale, you can configure your penlet’s properties,

images, audio, and text strings for that locale. To do this, click the

Locale: drop-down on any of the configuration editor tabs and choose

Developing Penlets

43

the locale to be configured. Then enter the locale-specific information, file

paths, and content.

Localizing Penlet Properties

To define basic properties of your penlet, click the Properties tab in the

Penlet Configuration Editor. Here you can change the menu name, launch

sound, penlet name, penlet classname, associated paper product,

version, and toggle the penlet to be locked (removable) or not.

To change a localized attribute:

1. Click the Locale: drop-down menu and select the desired locale.

For example, you could select the fr_FR locale.

2. In the Penlet's localized attributes table, click the cell under

Value that you wish to change.

An insertion point will appear and you can edit the value in place.

For example, you can change the Menu name from HelloWorld to

BonjourMonde.

3. Click the column head Value.

The new locale (if you changed it) and the new value will appear in

the table.

Developing Penlets

44

Localizing Image Resources

To define image resources for your penlet, click the Image Resources

tab in the Penlet Configuration Editor. Use the Add or Remove buttons

to locate and assign your localized images.

Internationalized image files are stored in a directory path including
images and then the locale name. In the sample res tree, you can find

English image files at res\images\en_US and French image files at

res\images\fr_FR.

Using Internationalized Image Resources

Using internationalized audio resources in your penlet involves these
steps:

1. Place your internationalized image resources in the appropriate

directory under res\images.

2. Get a reference to the ResourceBundle object. You’ll need the

penlet context for this step:

ResourceBundle bundle = this.context.getResourceBundle()

3. Call the getImageResource method on the ResourceBundle

object.

Developing Penlets

45

4. Call the getImage method on the ImageResource object returned

by the previous call.

Converting Localized Images to ARW

To create localized ARW images for your localized penlet project, do the
following:

1. Create the localized images in BMP, GIF, JPEG, JPG or PNG format

with a depth of 1 bit. (Each pixel is either on or off.)

2. Restrict your image size to 96 x 18 pixels, which is the size of the

smartpen display. For more details on size requirements for

images, see Using Bitmap Images.

3. Place the images in src\images\<locale name>. Thus, place

English BMP images in src\images\en_US and French BMP images

in src\images\fr_FR.

4. When you build your penlet project, the images will be

automatically converted and placed in the JAR at the following

path: res\images\en_US or res\images\fr_FR, etc.

Note: You can convert an image to ARW format manually by using the
Livescribe Image Converter in the Eclipse IDE with Livescribe plugins:

1. In the Package Explorer, select the top node of your penlet

project.

2. Select Livescribe > Penlet Configuration Editor.

3. On the Image Resources tab, click Add.

4. Click Browse to select your image file.

5. Click OK to Add the converted image.

The image will be converted to ARW format and stored in the

res\images folder of your penlet project. For example, move an

English image to : res\images\en_US or a French image to

res\images\fr_FR.

Developing Penlets

46

Localizing Audio Resources

To define audio resources for your penlet, click the Audio Resources

tab in the Penlet Configuration Editor. Use the Add or Remove buttons

to locate and assign your localized audio files.

Internationalized audio files are stored in a directory path including audio

and then the locale name. In the sample res tree, you can find English

audio files at res\audio\en_US and French audio files at

res\audio\fr_FR.

Using Internationalized Audio Resources

Using internationalized audio resources in your penlet involves these
steps:

1. Place your internationalized audio resources in the appropriate

locale directory under res\audio.

2. Get a reference to the ResourceBundle object. You’ll need the

penlet context for this step:

ResourceBundle bundle = this.context.getResourceBundle()

3. Call the getSoundResource method on the ResourceBundle object.

4. Call the getInputStream method on the SoundResource object

returned by the previous call.

Developing Penlets

47

Localizing Text Resources

To define text resources for your penlet, click the Text Resources tab in

the Penlet Configuration Editor. Use the Add or Remove buttons to

create key/value pairs of text strings for your penlet’s locales.

Note: Livescribe recommends that you add all keys to be localized in a

default locale, such as the resource root. This location is identified as

"default" in the config editor. Either en_US or en can also serve as the

default locale. Localize the keys you want to have different values in each

locale that you want to support.

Internationalized strings are stored in a file called message.properties,

which is located in a directory bearing the name of a locale. Thus, in the
sample res tree, English strings are in res\en_US\message.properties

and French strings are in res\fr_FR\message.properties.

Using Internationalized Text Resources

Using internationalized text resources in your penlet involves these steps:

1. Enter the strings in the message.properties file in the following

format: property.name=value

2. Get a reference to the ResourceBundle object. You’ll need the

penlet context for this step.

Developing Penlets

48

3. Call the getTextResource method on the ResourceBundle object,

passing the property name of the desired string.

4. Call the getText method on the TextResource object returned by

the previous call.

In the above description of the property name format:

• By “property.name,” we mean the dotted property names

common to Ant and Java. For example, you might use

greeting.formal as the name of a property that holds the text of

a formal greeting (such as “Good morning, sir or madam.”). And

you might use greeting.friendly as the name of a property that

holds the text of a friendly greeting (such as “Hi, there.”).

• By “value,” we mean the string in the language you wish displayed

on the smartpen. In the above example: "Good morning, sir" or

"Bonjour, monsieur" And "Hi, there!" or "Salut!".

Here’s a very basic code snippet:

ResourceBundle bundle = this.context.getResourceBundle();

String strGreeting = bundle.getTextResource(greeting.formal).getText()

Assigning Property Names to Constants

In accordance with good coding practice, you’ll probably decide to assign
the property names to constants and then pass the constant to getText

call. In that case, you would define constants such as:

public static final String I18N_STR_GREET_ADULTS = "greeting.formal"
public static final String I18N_STR_GREET_KIDS = "greeting.friendly"

And the code would look like this instead:

ResourceBundle bundle = this.context.getResourceBundle();

String strGreeting = bundle.getTextResource(I18N_STR_GREET_FORMAL).getText()

Developing Penlets

49

Handwriting Recognition
The Livescribe Platform provides support for recognizing users’
handwriting. As a user writes, a handwriting recognition engine
embedded in the smartpen firmware analyzes strokes and delivers
characters, words, and phrases to the current smartpen application.

Paper-Based Input Recognition

Computer recognition of paper-based input is a fascinating and
complicated field, full of acronyms such as OCR, HWR, and ICR. This
section briefly describes the differences in these technologies as they
apply to the Livescribe platform. If you are content with knowing that
the Livescribe smartpen performs true online handwriting recognition,
you may skip this section. Otherwise, please read on.

ICR and HWR

HWR comes in two varieties, depending on whether written characters
are considered "offline" or "online" data. We will start with the official
names of these technologies, and then say a word about their informal
use.

ICR (Intelligent Character Recognition) is a technology that analyzes
offline data. It recognizes hand-printed characters that have been
captured by a scanner or camera. ICR can take into account the shapes
and proximity of characters, but has little other information to aid its
interpretation effort. The Livescribe smartpen does not use ICR, in the
strict sense of the term.

Online HWR analyzes online written input. It incorporates some ICR
techniques, but solves an additional challenge—input in real time. For
Livescribe, Online HWR is a real-time technology that accepts strokes
from digital pens and determines the characters being written.
Recognition of written input on the Livescribe platform is true Online
HWR.

For Livescribe, strokes are paths traced on dot paper by the smartpen.
The paths are captured and stored as a series of points (x,y pairs) in
2-dimensional space, ordered by time. A single handwritten character is

Developing Penlets

50

made up of one or more strokes. A stroke starts when the pen tip
touches down on the paper and ends when the pen tip lifts up again.
Stroke characteristics include:

• Stroke’s start time

• Stroke's beginning and end points

• Sequence of points—sampled at equal intervals—which compose

the stroke’s path.

The engine receives strokes made by the smartpen on dot paper, and

delivers digital text that a penlet can use.

Used Interchangeably

As often happens, the sharp distinctions between ICR and HWR are rarely
observed in everyday usage. ICR is the older technology, and, indeed,
some ICR techniques persist in HWR. For these reasons, the term ICR is
sometimes applied to any analysis of written input, whether online or
offline. Thus, the smartpen's handwriting recognition engine is called the
ICR engine, and the Java API for handwriting recognition is found in the
com.livescribe.icr package.

In the Livescribe API and documentation, you can treat ICR and HWR as
synonyms.

Digital Text and Digital Ink

With the foregoing explanation in mind, we can clarify two other terms
that you may see in the Livescribe platform: digital text vs. digital ink.

Digital text refers to electronic sequences of characters that are
digitally-encoded according to an industry standard, such as ASCII. The
ICR engine takes written input and delivers digital text to the current
penlet.

Digital ink is a term that refers collectively to the strokes captured by a
digital smartpen. Livescribe handwriting recognition engine can translate
digital ink into digital text. Not all penlets use HWR.

Developing Penlets

51

Overview of Handwriting Recognition Process

The handwriting recognition process can be described as follows:

• Once the digital ink is captured by the smartpen and sent to the

recognition engine, the recognition cycle begins.

• The recognition engine uses files called resources that give it

information about alphabets, segmentation, character subsets,

language contents and so on.

• The recognition result is returned to the smartpen application as

digital text.

The handwriting recognition engine used by the Livescribe Platform is the
central element in the recognition process: it uses powerful handwriting
recognition algorithms combined with information about each language
being recognized to yield optimal recognition results.

Tuning for Performance
Your smartpen applications will achieve the best performance if you
follow these guidelines:

• Limit the number of files that your application creates on the file

system. This number should not exceed 500 files.

• Limit the number of files in the application’s JAR. This number

should not exceed 1000 files. The JAR includes class files and

resource files. Audio resource files, in particular, can become quite

numerous.

If your application needs more than 1000 individual audio resources,

you should consider bundling them into a few, larger files that will

reside either in the JAR or on the file system. You can then access

individual audio resources by calling API methods that enable direct

seeking into the files.

Note: Files in the JAR must NOT be stored with zip compression.

Developing Penlets

52

Sample Translator
Many developers learn most effectively from working samples. This section examines
the Sample Translator penlet, an Open Paper penlet. It exercises the fundamental
functionality of the Livescribe Java API.

This overview will cover the highlights only. If you wish more detail, please consult
the Javadoc in the Livescribe Platform SDK.

Please browse to livescribe.com and log on to the Developer Forums. Download the
com.livescribe.samples.translator project from the Developer Forum titled

Sample Code & Docs & FAQs. Open the SampleTranslator.java file and follow

along as you read. To further assist you, the source code is amply commented
throughout.

We approach the topic of programming penlets in two stages:

1. Sample Translator: User’s Perspective will describe the Translator penlet

in operation, from a user’s perspective. Since the Livescribe Livescribe

smartpen is a new platform and its input and output models not yet widely

known, we will spend a little time examining the user features of this penlet.

2. Sample Translator: Developer’s Perspective looks at the source code for

Sample Translator. It very briefly describes the methods that provide the

domain-specific functionality of Sample Translator (that is, how this penlet

matches an English source word to the written word and spokeju4c 9in audio

in the target language). We then jump into the heart of the sample,

examining how it exercises the Livescribe Java API.

Sample Translator: User’s Perspective

The Sample Translator penlet translates individual words from English to one of four
target languages: Spanish, Swedish, Mandarin, and Arabic. The equivalent word
appears on the OLED display of the Livescribe smartpen at the same time an audio
clip plays, demonstrating the pronunciation of the word by a native speaker.

Following is a quick examination of the Sample Translator penlet from the user’s
perspective. You may wish to follow along on your smartpen by building the
com.livescribe.samples.translator project and deploying (installing) on your

Developing Penlets

53

Livescribe smartpen. For information on using the Livescribe IDE, consult the manual
titled Getting Started with the Livescribe Platform SDK.

Launching the Sample Translator Penlet

The user launches the application from the smartpen’s Main Menu as follows:

1. The user taps on any Nav Plus on Livescribe dot paper, which launches the

smartpen’s Main Menu. The words “Main Menu” appear on the Livescribe

smartpen display and the corresponding audio plays.

2. The user taps on the down arrow of Nav Plus to view the list of available

applications, displayed one at a time.

3. When “Sample Translator” appears on the Livescribe smartpen display, the

user taps on the right arrow of Nav Plus to launch the Translator application.

Translating a Source Word
1. As soon as the application starts, a menu list of available target languages

appears on the Livescribe smartpen display. This is the application menu for

Translator.

Note: Not every penlet will have an application menu. Upon starting, some

penlets will display a message or communicate with the user by playing

audio.

2. The user taps the up or down arrow of any Nav Plus until the desired

language appears.

On the Livescribe smartpen display, there may be a small triangle at the

upper, lower, or right edge. These triangles mean that a user can “move” in

that direction. When the up triangle is visible, the user can tap the up arrow

on a Nav Plus to see another menu item in the browse list. A down triangle

indicates that the user can tap the down arrow. A right triangle means that

the user can select the current menu item and an action will occur. Usually,

this will have one of the following results:

• Some text and/or an image will display.

• An audio will play.

• Display and audio will occur simultaneously.

Developing Penlets

54

3. The user taps on the Nav Plus right arrow to start the corresponding

translation engine. The smartpen produces a message, instructing the user to

write a word. This message is multimedia: the text displays and the

appropriate audio plays.

4. On a page of Livescribe Open Paper, the user writes a word from the list of

English source words.

5. The translation engine finds the match in the target language, and the

Livescribe smartpen displays the target word and plays an audio recording of

the word, pronounced by a native speaker.

The format of the display is: source word – target word

For instance, if the user writes the word one while the application is in

Spanish mode, the display shows: one – uno. For Spanish and Swedish, the

output consists of Latin characters. In the case of Arabic and Mandarin, the

target word is displayed as an image that represents the appropriate non-

Latin characters.

Tapping a Previously Written Word

After users write word on the page, they can later return to the word and tap it. The
correct translation will be displayed and the accompanying audio played. The
application will use the current target language when performing a translation.

Consider our previous example in which the user wrote one:

1. The user returns to the application’s menu list of target languages and selects

Arabic.

2. The user finds the same page of dot paper and clicks the word one that they

wrote earlier.

3. This time the Arabic word will be displayed and the Arabic audio played.

4. The user taps on a different word or write a new word.

5. Please remember that this is a sample application, and the word list is short,

consisting of the numbers 0-10, hello, goodbye, please, thank you, thanks,

coffee, chocolate, banana, beer, and water. If the user writes a word not on

that list, the application displays a message: “Try writing:” followed by the list

of English source words.

Developing Penlets

55

Returning to Application Menu List

When users get the “Write or Tap a Word” message, they can tap the up, left, down
arrow or center of a Nav Plus. This action causes the application menu list to re-
appear. In the case of Sample Translator, that is the target language menu list.
Similarly, if a translation is still visible on the display and the user taps up, left, down
or center on Nav Plus, the target language menu list re-appears.

Sample Translator: Developer’s
Perspective
Now that we have examined the Sample Translator application from the end-user's
perspective, you are in a better position to understand individual classes and method
calls. It's time to look at the actual code.

Domain-Specific Code

The purpose of this penlet is to translate individual English words to one of four
target languages: Spanish, Swedish, Arabic, and Mandarin. The domain-specific logic
in this penlet is not our primary focus. A few words of explanation, however, will help
you orient yourself.

The code creates an array called ENGLISH_SOURCE_WORDS to hold the words that the

user can write and the penlet will translate. It also creates an array of target words
(i.e., translations) for Spanish and Swedish. The target display for Mandarin and
Arabic is a little more complicated, since they do not use the Latin alphabet. The
characters for those words are stored as images. All four target languages have
audio resources that contain the pronunciation of the target word by a native
speaker.

The set up work for the translation “lists” depends on the createDictionary and

createImages methods:

• The createDictionary method creates a hash table for each target

language: the English source word is the key and the target word (a string or

an image, as appropriate) is the value.

• The createImages method locates each image resource from the /images/

directory in the penlet JAR, gets a stream, and creates an Image object. It

Developing Penlets

56

then returns an array of these images for the target language (Mandarin or

Arabic).

The createEngines method calls both the createDictionary and createImages

methods to implement a translation “engine” for each target language. In the case of
Spanish and Swedish, the images are not required, so createEngines just retrieves

the target words from the appropriate target word array.

To get everything started, the SampleTranslator constructor calls createEngines.

User Writes a Word

When the user writes a word, the code (ultimately) calls processText, which in turn

calls:

• showTranslation

• addDynamicArea

The showTranslation method, as you might guess, displays the English word, a

dash, and the translated target word. It also plays the pronunciation audio file. The
addDynamicArea method creates a region for the word and adds it to the region

collection for the page of dot paper that the user tapped on.

User Taps a Written Word

When users tap on a word they wrote, the region for that word already exists. The
code calls processDynamicAreaId, which retrieves the English source word and the

target word or image and then calls showTranslation.

And that’s it. Now we can look at how to implement the code that uses the Livescribe
Smartpen Java API.

Constructor and Life Cycle

The SampleTranslator constructor and life cycle methods are pretty

straightforward.

The constructor creates the translation engines, as already mentioned. It also
creates a ScrollLabel object, as well as the Vector object that will hold the

BrowseList.Item objects required for the application menu (that is, the scrolling list

Developing Penlets

57

of target languages). In addition, it initializes the mode field, which will be used by

the Handwriting Recognition engine. The complete code of the constructor looks like
this:

public SampleTranslator() {
 this.labelUI = new ScrollLabel();
 this.createEngines();
 this.vectorMenuItems = new Vector();
 for (int i = 0; i < ENGINES.length; i++) {
 this.vectorMenuItems.addElement(ENGINES[i]);
 }

 this.mediaPlayerUI = MediaPlayer.newInstance(this);
 this.mode = MODE_READY;
 this.setEngine((byte) ENGLISH_TO_SPANISH);
}

initApp method

The initApp method gets the Display object required for output to the smartpen

OLED. It also adds a PenTipListener to handle penDown events. Since the

SampleTranslator class implements the PenTipListener interface, we pass a this

reference to the PenTipListener. The appropriate snippet is:

this.display = this.context.getDisplay();
 this.context.addPenTipListener(this);

Note: The other event handlers in the PenTipListener interface (penUp, singleTap,

and doubleTap) are of no interest to this penlet and are implemented as no-ops.

activateApp

Of the various things that happen in activateApp, the most important to us are the

following three:

this.menuView = new BrowseList(this.vectorMenuItems, null);

This line creates a BrowseList object, passing in the vectorMenuItems created in

the constructor. The application menu of target languages is a BrowseList object.

Each entry in the menu is a BrowseList.Item object.

this.display.setCurrent(this.menuView);

This line sets the current Display object to the BrowseList object called menuView,

which is the application menu. The current Display object must be set, or no display

to the OLED will occur. We will be resetting this object when we are finished with the
application menu and wish to display other objects, such as a ScrollLabel object.

Developing Penlets

58

this.switchToMode(MODE_TEXT_INPUT);

This calls a non-API method—that is, one particular to this penlet and not part of the
Livescribe Java API. The switchToMode method initializes the Handwriting

Recognition engine for use in our penlet. It also registers the StrokeListener,

passing in a reference to the SampleTranslator instance, which implements the

StrokeListener interface.

deactivateApp

The deactivateApp consists of one line:

this.switchToMode(MODE_READY);

This is the same method we show in activateApp, except that this time it is called

with the MODE_READY constant. Ultimately, this code clears the Handwriting

Recognition engine of strokes, disposes of its associated resources, and sets the
ICRContext to null. It also removes the StrokeListener.

Note the symmetry between activateApp and deactivateApp: first we add the

StrokeListener and then we remove it. If the system switches away from the

Sample Translator penlet and later switches back to it, the activateApp will be

called again and the StrokeListener added.

destroyApp

This penlet does nothing in destroyApp. Large resources, such as the Handwriting

Recognition engine resources, were already released in deactivateApp.

canProcessOpenPaperEvents

This method is inherited from the penlet class, where its implementation returns
false. The SampleTranslator class overrides it and returns true. This is a simple but

essential step for any penlet that wishes to receive events such as penDown when the

user taps on Open Paper.

public boolean canProcessOpenPaperEvents() {
 return true;
}

Developing Penlets

59

Displaying a BrowseList

This penlet creates BrowseList.Item objects by implementing the BrowseList.Item

interface in the static member class Engine. The Engine class serves a double

purpose:

• It provides getTargetLangContent and getTargetLangAudio methods to

return the appropriate target word and audio. They are called every time a

source word must be translated.

• As implementer of BrowseList.Item, it also provides the language name

(English, Spanish, Mandarin, and Arabic) and accompanying menu audio for

each item on the application menu. It does this by implementing

getAudioMimeType, getAudioStream, getText, and isSelectable.

The application menu is affected only by the BrowseList.Item section of the Engine

class. Let’s review the code involved:

• In its constructor, the penlet instantiates the Engine class once for each

target language and assigns the engines to vectorMenuItems.

• In activateApp, it creates a BrowseList object, passes in the vector, and

returns menuView.

• Also in activateApp, it calls this.display.setCurrent(this.menuView)

This last call hands the initialized BrowseList object to the system, which uses it to

display the current item of the application menu. (We must, however, handle
changing the focus of the BrowseList object, as you will see in the

handleMenuEvent discussion in a moment.)

isSelectable

This method is specified in the BrowseList.Item interface. The Engine class

implements it and returns true for each engine created, ensuring that on the OLED,
that item in the menu application has a small triangle displayed to the right. The
triangle means that the user can tap the right arrow of the Nav Plus and get a
response from the penlet. In the case of Sample Translator, the response is the
visual and audio message urging the user to write a word.

Developing Penlets

60

In the menuHandleEvent method, a penlet can call isSelectable when it receives a

MENU_RIGHT event. If the return is false, the penlet can choose not to respond and

let the system process the event. The Sample Translator penlet does not make this
test, however, since it knows that each language on the application menu should
have a triangle pointing to the right.

Displaying a ScrollLabel

BrowseList objects are not the only kind of display available. This penlet uses

ScrollLabel objects to display messages to the user. For instance, the “Write a

word” message and the results of the Handwriting Recognition engine are both
displayed to the smartpen OLED by using a ScrollLabel object.

You may remember that in the penlet constructor, we created a ScrollLabel object

called LabelUI. This object is used throughout the code for displaying messages and

results. The required sequence of calls is:

• labelUI.draw

• display.setCurrent

You can see actual calls, for example, in the section of handleMenuEvent that begins

with: if (event == MenuEvent.MENU_RIGHT). The lines are:

this.labelUI.draw(INPUT_PROMPT, true);
this.display.setCurrent(this.labelUI);

Registering Listeners

Sample Translator implements four listeners: StrokeListener, PenTipListener,

HWRListener, and MenuEventListener. Listeners fall into two categories when it

comes to registration. Some must be registered with the PenletContext object and

some do not. Of these listeners, the two that do not need to be registered are:

• MenuEventListener

• HWRListener

In this penlet, the listeners that must be registered and unregistered are:

• StrokeListener

Developing Penlets

61

• PenTipListener

This last group of listeners must be explicitly added by calling
context.addStrokeListener(this) and context.addPenTipListener(this). The

this reference, of course, is the penlet class that implements the respective

interfaces. Also, these listeners should generally be unregistered by calling
context.removeStrokeListener(this) and

context.removePenTipListener(this).

The Sample Translator source follows this model in the case of the StrokeListener,

which is added by activateApp and removed (indirectly) by deactivateApp. In both

cases, the switchToMode method is called directly, and it calls the appropriate add or

remove method. We could have done the same for the PenTipListener.

The Handwriting Recognition Engine

This penlet uses the Handwriting Recognition engine to analyze users’ handwriting
and return a best-guess at the word written. It uses intelligent character recognition
to accomplish this feat. In fact, we use the terms HWR (Handwriting Recognition)
and ICR (Intelligent Character Recognition) interchangeably for the present version
of the Java API.

This code creates the ICR engine context when activateApp is called and destroys it

when deactivateApp is called. Let’s look at the method that activateApp calls to

perform the initialization of the ICR engine: switchToTextInputMode. Note that this

is not an API call. The code gets an ICRContext object, specifying what timeout

determines the end of a word. When this time has passed with no more user input,
the ICR engine returns its best-guess to the penlet. A usable timeout is 1000
milliseconds.

The code then proceeds to add language and handwriting resources needed by the
ICR engine. These are part of the Livescribe Smartpen Java API., Finally, it registers
the StrokeListener.

private void switchToTextInputMode() {
 if (this.hwrEngine == null) {
// Obtain an ICR Engine with a (1) second user pause timeout
 this.hwrEngine = this.context.getICRContext(1000, this);
 this.hwrEngine.addResource(ICRContext.HPR_AK_DEFAULT);
 this.hwrEngine.addResource(ICRContext.SK_ALPHA);
 this.hwrEngine.addResource("lex_translatordemo.res");

 this.hwrEngine.addResource(ICRContext.LK_WORDLIST_30K);
 }
// Enable Penlet to obtain Stroke events from the system

Developing Penlets

62

 this.context.addStrokeListener(this);
}

The deactivateApp releases these same resources and destroys the ICR engine

when it calls the switchToReadyMode method (also not an API call). It unregisters

the StrokeListener at the same time. The calls are:

 this.context.removeStrokeListener(this);
 this.hwrEngine.clearStrokes();
 this.hwrEngine.dispose();
 this.hwrEngine = null;

Event Handling

There are five types of events that SampleTranslator handles. They provide the

heart of its functionality. The event handlers are:

• handleMenuEvent

• strokeCreated

• ICR engine events, which includes these event handlers:

a. hwrResult

b. hwrUserPause

• penDown

handleMenuEvent

The system calls this event handler whenever it has a new menu event. The penlet
can handle the event and return true—to indicate that the event is fully handled and
need not be further processed by the system. If the penlet returns false, then the
system handles the menu event in a generic way.

This penlet handles menu events in two ways:

• It sets the current focus of the BrowseList object (the application men) and

passes it to the setCurrent method on the Display object.

OR

• It displays a user input prompt such as “Write a word.” or “Try writing: (Hello

Goodbye Please Thank you Thanks Zero One Two Three Four Five Six Seven

Eight Nine Ten Coffee Chocolate Banana Beer Water)”

Developing Penlets

63

The CurrentMenu field is not an API field. It simply keeps track of what “mode” the

application menu is in: TRANS_MENU_LANGUAGE, TRANS_MENU_WRITE_TAP, and

TRANS_MENU_ACTIVE. You need not worry about the details, unless they interest you.

The event-handling logic that exercises the API involves the MenuEvent class

constants: MENU_UP, MENU_DOWN, MENU_SELECT, MENU_LEFT, and MENU_RIGHT. Recall

that MENU_SELECT stands for tapping on the center of the Nav Plus.

Up, Down, Center, and Left Menu Events

The up, down, center, and left menu events may arrive when the Sample Translator
user has written or tapped or word or has just received the “Write a Word” message.
In that case, we set the focus of the BrowseList object (i.e., menuView) and pass it

to the Display object for display on the Livescribe smartpen OLED. The code is:

if ((event==MenuEvent.MENU_UP)||
 (event==MenuEvent.MENU_DOWN)||
 (event==MenuEvent.MENU_SELECT)||
 (event==MenuEvent.MENU_LEFT)) {

 this.menuView.setFocusItem(this.currentEngine);
 this.display.setCurrent(this.menuView);
 setCurrentMenuMarker(TRANS_MENU_LANGUAGE);
 return true;
}

Note that we set the focus of the menuView object to a number representing the

current target language (currentEngine is a byte that stands for the current

translation engine). Then we pass this.menuView to display.setCurrent so that

menuView will be displayed.

Right Menu Event

The RIGHT_MENU event is key to any penlet. This is the event that the system sends

when the user taps on the right arrow of a Nav Plus. It means “select the current
item” or “display a submenu.” In Sample Translator, it displays the “Write a word”
message.

The relevant code is:

if (event == MenuEvent.MENU_RIGHT) {

// Obtain the single prompt string and play associated APM
 this.playCommandAPM();

// Draw the single prompt string
 this.labelUI.draw(INPUT_PROMPT,true);
 this.display.setCurrent(this.labelUI);

Developing Penlets

64

 setCurrentMenuMarker(TRANS_MENU_WRITE_TAP);
 return true;
}

Note that this case handles the event by playing a sound and displaying text. The
term APM means “Audio Punctuation Mark”. In this case, it is the audio command to
the user: “Write a word.” When users tap the right arrow, they are leaving the
application menu. In order to display to the OLED, we need a ScrollLabel object

such as labelUI. We call draw on that object and then pass it to

display.setCurrent. Don’t’ forget this last step; if you do, your ScrollLabel object

will not be displayed.

Navigating Up and Down in a BrowseList

Consider the state of Sample Translator when the OLED is currently displaying the
application menu and the user taps the up and down arrows to sequentially access
the four choices for target language. In that situation, handleMenuEvent must

implement the browse up and browse down response of the BrowseList object.

Here’s the code:

int selection
if (event == MenuEvent.MENU_DOWN) {
 selection = this.menuView.focusToNext();
}
else if (event == MenuEvent.MENU_UP) {
 selection = this.menuView.focusToPrevious();
}
else {
 selection = this.menuview.getfocusIndex();
}
this.setEngine((byte)selection);
return true;
}

The focusToNext and focusToPrevious methods are defined in the BrowseList

class. Note setEngine, which is not part of the API. It updates the currentEngine

field of Sample Translator, based on the whether the user browsed up or down.
Thus, the currentEngine field always reflects the current focus item (or, translation

engine) of the BrowseList. Keep this fact in mind for the next section.

Tapping Back From a Right Menu Event

When the user taps the right arrow of a Nav Plus, Sample Translator abandons the
application menu and displays the “Write a word” message, followed by the English
word and translation (if the user’s writing is successfully read by the ICR engine and
the source word is contained in the English source word array.)

Developing Penlets

65

In that state, the penlet may wish to respond to an up, down, left, or center tap As
we saw above, Sample Translator causes the application menu to be displayed. But
at that point, how does the penlet know which language on the menu to display. If
you look at the code in the section titled “Up, Down, Center, and Left Menu Events”
you will quickly identify the line of code:

 this.menuView.setFocusItem(this.currentEngine);

We set the current focus of menuView by passing the number that represents the

current translation engine. When the user was tapping up and down, we preserved
that number by calling

 this.setEngine((byte)selection)

Remember: If “tapping back” after a right menu event makes sense in your penlet,
you must preserve the current focus of the application menu’s BrowseList object

when you handle the MENU_RIGHT event.

strokeCreated

This event handler is called by the system when the user makes a stroke on dot
paper. The system passes as parameters the start time of the stroke, the region on
which it occurred, and the page of dot paper (i.e., the PageInstance object).

The system knows which penlet owns the region by calling the getInstance method

on the region. The value returned is the penlet instance ID, which is assigned by the
system. If the stroke occurs on Open Paper, the region ID is 0. Consequently, the
instance ID is also 0, since the area ID is a 16-bit subset of the region ID.

Sample Translator tests for the instance ID associated with the region that
strokeCreated passes in. If it is 0, then the stroke occurred on Open Paper and the

penlet calls addStroke to send the stroke to the current ICR engine for analysis into

a character. Otherwise, the stroke should be ignored. The code looks like this:

if (OPEN_PAPER_INSTANCE_ID==region.getInstance()){
 if (this.engine != null) {
 this.hwrEngine.addStroke(pageInstance, startTime);
 }
}

For the sake of convenience, this penlet defined the constant
OPEN_PAPER_INSTANCE_ID = 0.

Developing Penlets

66

HWR Events: hwrUserPause and hwrResult

When the ICR engine (also known as: the HWR engine) receives strokes via the
addStroke method call, the engine tries to assemble strokes into likely characters. It

then compares the growing character string with the words in its lexicon.

hwrUserPause

When the user stops writing for 1000 milliseconds, the ICR engine posts an
hwrUserPause event, which causes the system to call the hwrUserPause event

handler for the current penlet. It passes as parameters the time the word was
written and the result that the ICR engine produced. The result is a String.

In Sample Translator, the hwrUserPause handler calls the non-API method

processText, which gets the translated word and audio and then calls

showTranslation to display the translation and play the audio. Then processText

proceeds to:

1. Get the bounding box of the ICR result by calling getTextBoundingBox on the

ICRContext object.

2. Determine an areaId, based on the string passed by the result parameter.

Sample Translator simply uses that string to find the index of the

ENGLISH_SOURCE_WORDS array and uses that index as the areaId. (See the

non-API method getAreaId for details.)

3. Get the region collection for the current page instance and call the non-API

method addDynamicArea to perform these tasks:

• create a new Region object with the areaId that you found n the previous

step.

• add the region to the region collection.

4. Finally, processText calls clearStrokes on the ICRContext object.

The code in processText that pertains to creating a new region includes the

following snippets. Please note that hwrEngine is an ICRContext object:

...
Rectangle wordBox = this.hwrEngine.getTetBoundingBox()
...
RegionCollection rc=this.context.getCurrentRegionCollection();
Rectangle wordbox = this.hwrEngine.getTextBoundingBox();

Developing Penlets

67

...
if (!rc.isOverlappingEsxistingArea(wordBox) && wordAID >=0){
 addDynamicArea (wordBox, wordAID, ac);

The code in addDynamicArea actually creates the region and adds it to the region

collection:

Region tempRegion = new Region (areaID, false, false);
ac.addRegion(rect, tempRegion, false);

When processText has completed, an area ID is now associated with the new

region. When a user taps on that region, areaId can be used to determine what

behavior the penlet should exhibit. For details, see penDown.

Always call clearStrokes

At the very end of processText you see this call:

this.hwrEngine.clearStrokes();

Remember to clear the strokes from the ICR engine when you have finished
processing hwrUserPause event handler. If you do not, the ICR engine will give

unpredictable results.

hwrResult

The hwrResult event handler is called whenever the ICR engine analyzes a character

and then tries out various words in its lexicon that would fit. A penlet can display
these intermediate steps, process them in some way, or ignore them. If the penlet
ignores them, users will see no feedback on the smartpen OLED while they are
writing a word.

Sample Translator chooses to display each intermediate “guess” of the ICR engine as
comforting feedback to the user that the penlet is still operating. In addition, an
inaccurate result lets the user know that they will have to re-write the current word.

The code for displaying the ICR engine’s results in real time is:

this.labelUI.draw(result();
if (this.display.getCurrent() != this.labelUI) {
 this.display.setCurrent(this.labelUI);

}

Developing Penlets

68

penDown

The system calls the penDown handler when a user taps the smartpen tip down on

dot paper. Like strokeCreated, the system passes as parameters the time of the

event, the region it occurred on, and the page instance.

In Sample Translator, the code first checks to see if the penDown is on Open Paper. It

does this by calling getInstance on the region. This returns the instanceId of the

penlet. An instanceId of 0 indicates that the event occurred on no region—that is,

on Open Paper. Our code simply returns:

if (OPEN_PAPER_INSTANCE_ID==region.getInstance() {
 return;

}

If the penDown was on a region, then we know that it belongs to Sample Translator.

When an event occurs on a region, the system sends the event just to the owner of
the region. The pertinent code is:

int areaID = region.getAreaId();

// Log AreaIDs that translator handles

// If AreaID is between 0 and source word array length

if((areaID >= 0) && (areaID < (ENGLISH_SOURCE_WORDS.length)))
{
// If the source word is supported, request engine processing
 processDynamicAreaId(areaID);
}

The non-API method processDynamicAreaId uses the areaID to retrieve the English

word from the ENGLISH_SOURCE_WORDS array, the word or image from the correct

target language hash table, and then call the non-API method showTranslation,

which displays the translation and plays the pronunciation.

